常见的 Redis 简单面试题(一)

文章
林里克斯

适用与任何一名运维工程师,用于 Linux 运维面试专用,持续更新中~

常见的 Redis 简单面试题(一)


2020-08-10 更新~


  1. Redis 常用高可用架构有哪些?
Redis Sentinel 集群 + 内网 DNS + 自定义脚本

Redis Sentinel 集群 + VIP + 自定义脚本

封装客户端直连 Redis Sentinel 端口

 - JedisSentinelPool,适合 Java
 - PHP 基于 phpredis 自行封装

Redis Sentinel 集群 + Keepalived/Haproxy

Redis M/S + Keepalived

Redis Cluster

Twemproxy

Codis
  1. Redis 高可用架构优劣对比?
Redis Sentinel 集群 + 内网 DNS + 自定义脚本

优点:

 - 秒级切换
 - 脚本自定义,架构可控
 - 对应用透明

缺点:

 - 维护成本略高
 - 依赖 DNS,存在解析延时
 - Sentinel 模式存在短时间的服务不可用

Redis Sentinel 集群 + VIP + 自定义脚本

优点:

 - 秒级切换
 - 脚本自定义,架构可控
 - 对应用透明

缺点:

 - 维护成本略高
 - Sentinel 模式存在短时间的服务不可用

封装客户端直连 Redis Sentinel 端口

优点:

 - 服务探测故障及时
 - DBA 维护成本低

缺点:

 - 依赖客户端支持 Sentinel
 - Sentinel 服务器需要开放访问权限
 - 对应用有侵入性

Redis Sentinel 集群 + Keepalived/Haproxy

优点:

 - 秒级切换
 - 对应用透明

缺点:

 - 维护成本高
 - 存在脑裂
 - Sentinel 模式存在短时间的服务不可用

Redis M/S +Keepalived

优点:

 - 秒级切换
 - 对应用透明
 - 部署简单,维护成本低

缺点:

 - 需要脚本实现切换功能
 - 存在脑裂

Redis Cluster

优点:

 - 组件 all-in-box,部署简单,节约机器资源
 - 性能比 proxy 模式好
 - 自动故障转移、Slot 迁移中数据可用
 - 官方原生集群方案,更新与支持有保障

缺点:

 - 架构比较新,最佳实践较少
 - 多键操作支持有限(驱动可以曲线救国)
 - 为了性能提升,客户端需要缓存路由表信息
 - 节点发现、reshard 操作不够自动化

Twemproxy

优点:

 - 开发简单,对应用几乎透明
 - 历史悠久,方案成熟

缺点:

 - 代理影响性能
 - LVS 和 Twemproxy 会有节点性能瓶颈
 - Redis 扩容非常麻烦
 - Twitter 内部已放弃使用该方案,新使用的架构未开源

Codis

优点:

 - 开发简单,对应用几乎透明
 - 性能比 Twemproxy 好
 - 有图形化界面,扩容容易,运维方便

缺点:

 - 代理依旧影响性能
 - 组件过多,需要很多机器资源
 - 修改了 Redis 代码,导致和官方无法同步,新特性跟进缓慢
 - 开发团队准备主推基于 Redis 改造的 reborndb
  1. Redis 相对 MySQLPostgreSQL 这些关系型数据库,有什么优缺点?
 - 观点一

Redis 主要是用来做缓存,它有持久化,但也只是为了缓存的可靠而已。优点是数据全放内存,速度快。缺点就是,数据大小不能超过内存大小。两个用在不同业务场景,Redis 无法取代传统关系型数据库。

 - 观点二

Redis 首先它是一种内存数据库,最大的优势在于效率高。尤其在某些特定场合下,例如热点数据量非常大,而数据从内存和磁盘之间的换入换出代价比较高的情况下,Redis 就会体现它的价值。

传统关系型数据库在于它对数据的一致性保障,它的数据模型范式是遵循严格事务规则的结构化数据,由于其数据的高度抽象化,它调度到内存的数据一般场合下不会占用很大的内存空间。

总的来说,两种数据库各有各的优点和缺点。不同的业务场合有特定的追求目标,redis 首要的是效率,适用的是一些单纯二维结构化数据无法表达的数据模型,而关系型数据库处理的是可以用范式模型表达的二维数据,追求的是数据的高度一致性。随着 IT 的发展,每一类型的数据库都会在其特定的场合内发挥出无可比拟的优势,最终的趋势是大家趋于平衡,没有最好,只有最适合。

 - 观点三

记住一句话:任何数据库都有自己的应用场景,应该关注数据流、数据属性。

个人的经验来说,Redis 不可能取代 MySQL 或者 PG。
  1. 新接手一个复杂的 Redis 集群(Sentinel 模式),如何了解它
通读 Sentinel 官方文档:https://redis.io/topics/sentinel

Google 搜索 Redis Sentinel,找几篇中英文的文章看看

进入 Sentinel 集群后,使用 info 查看集群信息

查看 Sentinel 配置文件,配合文档搞清楚每个参数的含义

使用几台虚拟机模拟线上环境,然后做测试,在实践中深入理解

思考当前 Sentinel 集群是否有不合理的地方,如有,提出并改进
  1. Redis 实例中,存在大量的 FIN_WAIT2 连接
 - 客户端 TCP 状态迁移

CLOSED->SYN_SENT->ESTABLISHED->FIN_WAIT_1->FIN_WAIT_2->TIME_WAIT->CLOSED

 - 服务器 TCP 状态迁移

CLOSED->LISTEN->SYN 收到 ->ESTABLISHED->CLOSE_WAIT->LAST_ACK->CLOSED

这个状态存在于主动发起断开请求的一端,如果服务器存在大量的这个状态,那么这个服务器就充当客户端的角色,如网络爬虫,出现的原因是由于客户端发起 FIN 请求结束连接之后,收到了服务端的应答之后进入 FIN_WAIT2,之后就没收到服务端发送的 FIN 信号导致。
  1. 如何知道当前 Redis 实例是处于阻塞状态?
(1) 随便 get 一个 key,然后卡着不动就行,简单粗暴。优雅一点是看 latency 的延迟,blocked_clients 的数量,rejected_connections 的数量等

(2)
方法一:登录 Redis,执行 info,查看 blocked_clients
方法二:执行 redis-cli --latency -h -p 查看延时情况
  1. Redis 运维的故障有哪些?
使用 keys * 把库堵死,——建议使用别名把这个命令改名

超过内存使用后,部分数据被删除——这个有删除策略的,选择适合自己的即可

没开持久化,却重启了实例,数据全掉——记得非缓存的信息需要打开持久化

RDB 的持久化需要 vm.overcommit_memory=1,否则会持久化失败

没有持久化情况下,主从,主重启太快,从还没认为主挂的情况下,从会清空自己的数据——人为重启主节点前,先关闭从节点的同步

 - 简单说下 Redis 故障的排查方法

了解清楚业务数据流是怎么样的

结合 Redis 监控查看 QPS、缓存命中率、内存使用率等信息

确认机器层面的资源是否有异常

故障时及时上机,使用 redis-cli monitor 打印出操作日志,然后分析(事后分析此条失效)

和研发沟通,确认是否有大 Key 在堵塞(大 Key 也可以在日常的巡检中获得)

和组内同事沟通,确实是否有误操作

和运维同事、研发一起排查流量是否正常,是否存在被刷的情况
  1. 提高 Redis 内存数据库的性能,有哪些措施?
根据不同业务选择数据类型,有必要时对数据结构进行审核,减少数据冗余

精简键名和键值,控制键值的大小

使用前缀管理好 key

使用 scan 代替 keys,将遍历 Redis DB 中所有 key 的操作放到客户端来做

避免使用 O(N) 复杂度的命令

配置使用 ziplist 来优化 list

合理配置 maxmemory

数据量大的情况,做好 key 和 value 的压缩

利用管道,批量处理命令

根据不同业务选择短链接或者长链接

定期使用 redis-cli --big-keys 检测大 Key

Over~

版权协议须知!

本篇文章来源于 Uambiguous ,如本文章侵犯到任何版权问题,请立即告知本站,本站将及时予与删除并致以最深的歉意

1198 0 2020-08-10


分享:
icon_mrgreen.gificon_neutral.gificon_twisted.gificon_arrow.gificon_eek.gificon_smile.gificon_confused.gificon_cool.gificon_evil.gificon_biggrin.gificon_idea.gificon_redface.gificon_razz.gificon_rolleyes.gificon_wink.gificon_cry.gificon_surprised.gificon_lol.gificon_mad.gificon_sad.gificon_exclaim.gificon_question.gif
博主卡片
林里克斯 博主大人
一个致力于Linux的运维平台
运维时间
搭建这个平台,只为分享及记载自己所遇之事和难题。

现在时间 2025-01-18

今日天气
站点统计
  • 文章总数:241篇
  • 分类总数:29个
  • 评论总数:14条
  • 本站总访问量 365589 次

@svmuvwpuqi 真棒!

@smdxydrauu 博主太厉害了!

@奥奥

@Wong arrhenius 牛比

@MakerFace 厉害了!